Lignin-based carbon fibers: Carbon nanotube decoration and superior thermal stability
نویسندگان
چکیده
منابع مشابه
Nanotube Composite Carbon Fibers
The mechanical properties of materials in small rod-shaped form are of considerable technological interest since, due to their shape and size, they can exhibit appreciably greater strength relative to corresponding macroscopic forms. For example, the mechanical strength of silicon carbide whiskers systematically increases with decreasing whisker diameter over the 100 to 1 micron range. This phe...
متن کاملStrong carbon-nanotube fibers spun from long carbon-nanotube arrays.
The superior mechanical properties of carbon nanotubes (CNTs) mean they have been regarded as a new material with the potential to revolutionize and enable many advanced technologies. CNTs have extremely high tensile strength ( 150 GPa), high modulus ( 1 TPa), large aspect ratio, low density, good chemical and environmental stability, and high thermal and electrical conductivity. These superior...
متن کاملThermal conductivity of high performance carbon nanotube yarn-like fibers
Articles you may be interested in Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite Appl. Filler geometry and interface resistance of carbon nanofibres: Key parameters in thermally conductive polymer composites Appl. Effective multifunctionality of poly(p-phenylene sulfide) na...
متن کاملCarbon Nanotube Fibers: Challenges and Opportunities
The superb mechanical and physical properties of individual carbon nanotubes (CNTs) provide the impetus for researchers in developing highperformance continuous fibers based upon CNTs [1]. The highest specific strength and stiffness reported for CNT fibers are, respectively, 5.3 times that of the strongest commercial fiber (T1000), and 4.3 times that of the stiffest commercial fiber (M70J) [2]....
متن کاملCarbon Fibers from UV-Assisted Stabilization of Lignin-Based Precursors
Production of high strength carbon fibers from bio-derived precursors is of topical interest. Recently, we reported on dry-spinning of a partially acetylated softwood kraft lignin to produce carbon fibers with superior properties, but the thermo-oxidative stabilization step required a long time due to a slow heating rate needed to prevent the fibers from being heated too rapidly and sticking to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Carbon
سال: 2014
ISSN: 0008-6223
DOI: 10.1016/j.carbon.2014.08.042